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ABSTRACT 

The widely used least absolute deviation (LAD) estimator with the smoothly clipped 
absolute deviation (SCAD) penalty function (abbreviated as LAD-SCAD) is known to 
produce corrupt estimates in the presence of outlying observations.  The problem becomes 
more complicated when the number of predictors diverges. To overcome these problems, 
the LAD-SCAD based on sure independence screening (SIS) technique is put forward. 
The SIS method uses the rank correlation screening (RCS) algorithm in the pre-screening 
step and the traditional Pathwise coordinate descent algorithm for computing the sequence 
of the regularization parameters in the post screening step for onward model selection. It 
is now evident that the rank correlation is less robust against outliers. Motivated by these 
inadequacies, we propose to improvise the LAD-SCAD estimator using robust wrapped 

correlation screening (WCS) method by 
replacing the rank correlation in the SIS 
method with robust wrapped correlation. 
The proposed estimator is denoted as 
WCS+LAD-SCAD and will be employed 
for variable selection. The simulation study 
and real-life data examples show that the 
proposed procedure produces more efficient 
results compared to the existing methods.

Keywords: LAD-SCAD estimators, robust screening, 

ultrahigh dimensional data, variable selection 
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INTRODUCTION

The variable selection has become the key ingredient in building reliable and reproducible 
prediction models and hence, is fundamental to scientific studies in areas such as text 
processing, gene expression analysis, epidemiology, and combinatorial chemistry, 
among others. The main objective of variable selection is to find a subset of the predictor 
variables with the highest predictive power and better interpretability. In practice, most of 
the real-life dataset contains a huge number of the predictor variables, though some may 
not be significant to the target response. As a result, the accuracy of the model selection 
poses a major challenge due to the fact that redundant variables may affect the selection 
frequency of the authentic predictor variables (George, 2000; Heinze et al., 2018; Uraibi 
et al., 2017).  Stepwise selection procedures are often used to find the most relevant 
variables which influence the value of the dependent variable.  However, this method is 
known to produce inconsistent and biased estimates in addition to poor prediction and 
therefore, it is considered impractical for variables selection (Whittingham et al., 2006; 
Desboulets, 2018).  In line with this, penalized least square estimators such as the least 
absolute shrinkage and selection operator are developed to remedy these shortcomings 
(Tibshirani, 1996). The attractive features of Lasso are that they can simultaneously 
perform both estimation and variable selection, and they can also be applied to the high 
dimensional dataset.  Furthermore, Leng et al. (2006) and Meinshausen and Bühlmann 
(2006) exemplified the inconsistency of the Lasso condition. Fan and Li (2001) and Fan 
and Peng (2004) noted that the Lasso did not enjoy the oracle property, which was the 
ability to correctly estimate the insignificant coefficient with probability converging to 
one.  This led to the development of the Adaptive Lasso estimator which had been proven 
to enjoy the oracle properties under regularity conditions (Zou, 2006). It is noted that 
the two objective functions of Lasso and Adaptive Lasso are convex; therefore, they do 
not achieve the closed form numerical solutions. Conversely, smoothly clipped absolute 
deviation (SCAD) penalized least squared objective function is concave (Xie & Huang, 
2009) and note that SCAD penalized estimators can achieve sparse estimates and unbiased 
solution for the large coefficients. There are several interesting penalized estimators in the 
literature which include the bridge regression (Frank & Friedman, 1993), Dantzig selector 
(Candes & Tao, 2007), and the Elastic Net (Zou & Hastie, 2005).  The difficulty of using 
penalized methods becomes obvious when the dimensionality is ultrahigh. To address this 
problem, Fan and Lv (2008) introduced the concept of sure independence screening (SIS) 
to reduce dimensionality from ultrahigh scale to moderate which was below the sample 
size and then selected the most significant variables into the linear model. As mentioned in 
Fan and Song (2010), it is explicit that SIS is computed based on the ordinary least squares 
(OLS) and is heavily dependent on the joint normality assumption between predictors and 
the response. Consequently, compared with Lasso and smoothly clipped absolute deviation 
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(SCAD) method, SIS proves to produce accurate prediction and interpretable model. Li et 
al. (2012) and Fan et al. (2009) presented feature screening-based distance correlations.  
The extended ultrahigh dimensional sure independence screening for the generalized linear 
model was discussed in Saldana and Feng (2018) and Ahmed and Bajwa (2019). However, 
since the preceding studies created a synergy between the Lasso type estimators and the 
sure screening methods for ultrahigh dimensional data, the Lasso type based sure screening 
methods had been studied by Ghaoui et al. (2010), Tibshirani et al. (2012), Xiang and 
Ramadge (2012) as cited in Ahmed and Bajwa (2019).

All the aforesaid estimators are known to be inefficient when the errors come from a 
heavy tailed distribution and/or in the presence of outliers in the response, as all of them 
technically utilize either the OLS loss function and/or the classical correlation learning 
algorithm. To address this issue, Wang et al. (2007) and Wu and Liu (2009) had put forward 
the least absolute deviation lasso (LAD lasso) and the LAD-SCAD estimators, respectively. 
Fan and Li (2001) observed that the penalized SCAD satisfied oracle only when the numbers 
of parameters were finite.  Fan et al. (2009) noted that using a combination of the penalized 
estimators with the SIS procedure substantially improved the performance of the penalized 
estimators. The SIS is computed based on the Pearson correlation between the dependent 
and independent variables; however, it is known to be sensitive to outliers or heavy tailed 
errors (Li et al., 2011; Li et al., 2012). However, the authors suggested the use of rank 
correlation screening (RCS) method based on Kendall instead of the Pearson correlation 
in the pre-screening step of the SIS method. Li et al. (2011) combined the RCS with the 
penalized LAD-SCAD to achieve robust variable selection and parameter estimation when 
the number of predictor variables diverged.  

Li et al. (2011) and Li et al. (2012) innovative approach and outstanding results are  
challenged at both the pre-screening and post screening steps as their screening algorithms 
and computation of the regularization parameter are based on Kendall rank correlation 
and the traditional path descent algorithm, which are both not robust against outlying 
observations (Wang et al., 2015). As an alternative to the existing correlation learning 
algorithm, Raymaekers & Rousseeuw (2019) advocated a robust and fast wrapped 
correlation algorithm which was based on the concept of g-product moment transformation. 
A comparison between this approach and other correlation algorithms such as the Kendall 
tau, Gnanadesikan Kettenring (GK) and scale estimator, among others, had clearly shown 
that the wrapped correlation algorithm was more robust against outliers than other existing 
methods (Raymaekers & Rousseeuw, 2019). Inspired by these, we proposed incorporating 
the wrapped correlation learning algorithm in the LAD-SCAD method to serve as a 
screening algorithm to reduce dimensionality from high to below sample size. The proposed 
method is expected to be more efficient than the existing methods in this study. 
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MATERIALS AND METHODS

Consider the linear regression Equation 1

i
T
ii eXy += 0β ,       (1)

where β0 is the vector of the regression parameters, Xi represents pn the dimensional vectors 
of the predictors, yi is the vector of the response variable, and ei is independent identically 
distributed vector of the random errors with mean 0 and the constant variance 2σ . Under 
these conditions, the classical linear regression estimators are applied. In the presence of 
anomalous observations in a dataset, and/or when the distribution of the errors is not normal, 
the robust regression loss function is applied to shrink the effect of outlying observations on 
the estimates of the regression (Bai & Wu, 1997; Maronna et al., 2019). In the application 
of this concept, the relationship between the vector of the response variable yi and the set 
of predictors ( )pi xxX ,,1 =  can be modelled by minimizing the following objective 
function (Equation 2):

( )∑
=

−
n

i

T
ii Xy

1
0βρ ,        (2)

where ρ is a continuous symmetric function called the objective function with unique 
minimum at 0 (Rousseeuw & Leroy,1987). Various choices of ρ functions have been 
suggested in the robust works (Bai & Wu, 1997; Stuart, 2011) for linear regression; for 
example, the quantile regression with ( ) ( )( ) ,10,1 <<−−+= ++ αααρα xxx where ( )0,max xx =+

and the qL  regression estimates with ( ) 21, ≤≤= qxx qρ . If 1=q , the minimizer in Equation 
2 is generally named the least absolute deviation (LAD) estimator. Conversely, for sparse 
regression model, namely ( )TT

b
T
a βββ ,0 = where aβ  is a 1×nk vector of the significant 

parameters ( )0≠aβ  and bβ is an 1×nm  vector of the insignificant parameters ( )0=bβ  such 
that nnn pmk =+ , we define correctly fitted model as a model which has nk significant and 

nm  insignificant coefficients. Throughout this paper we used nλ instead of λ  to accentuate 
the dependency of λ on the sample size  (Fan & Li, 2001). Following Wang et al. (2015) 
the Huber penalized loss function can be expressed as Equation 3: 

 ( ) ( )nj

p

j

n

i
n

T
ii

n

pnXy ββρ λ∑∑
==

+−
11

,     (3)

where np is the dimension of nβ , ( )⋅λp  is the SCAD penalty function which depend on 
the regularization parameter λ  as defined in Fan and Li (2001) and Wang et al. (2015).  
There are various versions of regularization functions in the literature, but the Lasso and 
SCAD penalties have been cited to be more efficient. Comparison of the two functions by 
different scholars (Fan & Li, 2001; Xie & Huang, 2009) has shown that SCAD penalty 
enjoys all the three desirable properties of good penalty function: continuity, sparsity, 
and biasness while the Lasso penalty generates estimation bias but enjoys sparsity and 
continuity properties (Fan & Li, 2001; Li et al., 2011). Motivated by these properties, 
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Huang & Xie (2007) and Li et al. (2011) proposed the penalized least squares SCAD and 
SCAD penalized M estimators for estimation and variable selection. More recently, Wang 
et al. (2015) suggested the penalized LAD-SCAD estimator with divergence number of 
predictors. By following Wang et al. (2015), Equation 3 can be written as Equation 4:  

( ) ,
1

0

1
∑∑
==

′+−
n

n

p

j
njnj

n

i
n

T
ii pnXy βββ λ                  (4)

Where ( )⋅′
n

pλ  presents a vector of 1×np dimension whose thj  elements are the first 
derivative of the SCAD penalty function defined by Equation 5:   
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and ( )Tnpnnj n

00
1

0 ,, βββ = represents a vector of an initial estimates, which is usually obtained 
by minimizing the unpenalized objective function in Equation 2 when ,1=q  and as a 
result, Equation 4 followed. Hence, the objective function in Equation 4 is continuous 
and differentiable which can achieve global minimum. To simplify the selection of 
regularization parameter, Fan and Li (2001) recommended using 7.3=a and 0>λ  as the 
tuning parameter in Equation 5 for the SCAD regularization function. The minimization 
function in Equation 4 is called penalized LAD-SCAD estimator.

RESULTS AND DISCUSSION

Asymptotic Properties of the LAD-SCAD Estimator 

In this section, we discuss some important asymptotic properties of the LAD-SCAD 
estimator when the number of predictor variables diverges with increasing number of 
samples. Pursuing Wang et al. (2015), the following definitions and assumptions are 
adapted:
Assumption 1. The errors are continuous and has a positive density at origin with median 0. 
Assumption 2. There exists a positive fixed value .max: 1,1 MXM ijpjni n

≤∞< ≤≤≤≤

Assumption 3. 03 →npn  as ∞→n
A s s u m p t i o n 4 .  T h e r e  e x i s t s  f i x e d  v a l u e s  ∞<<< 210 ρρ a n d 

221121 :0 ρρρρττ ≤≤≤∞<<< nn and .2211 ττττ ≤≤≤ nn

Assumption5. ∞→nnpn λ and 0→nλ
The preceding notations and assumptions have been used in the literature to study the 

asymptotic normality, consistency, and sparsity properties of the penalized LAD-SCAD 
estimators (Li et al., 2011; Wang et al., 2015). To establish asymptotic properties of the 
LAD-SCAD, the following important notations and definitions are required.  
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Partitioning the 1×np  vector of parameters nβ  as ( )TT
n

T
nn 21 ,βββ = in the same way as

0β , where ( )Tpn 0
,,11 βββ =  represents the vector corresponding to all significant coefficients 

and ( )Tppn βββ ,,12 0
+=  represents a vector corresponding to all the insignificant coefficients. 

Let ( )T
nS

T
nSS 21

ˆ,ˆ βββ =  be the corresponding LAD-SCAD estimator. We also divided the predictors 
ix for ni ,,1=  as ( )T

ni
T

nii xxx 21 ,=  with ( )Tipini xxx
0

,,11 = and ( )Tipipni xxx ,,12 0
+= . 

Furthermore, define
 

( ){ }0
0

1 1:max pjpa njn n
≤≤′= βλ and ( ){ }pjppb njn n

≤<′= 0
0

2 :min βλ
, where ( )⋅′

n
pλ  

is a function of sample size n as mentioned in (Fan & Peng, 2004; Li et al., 2011). Based 
on the preceding assumptions and notations, the following theorems can be established 
for the modified penalized LAD-SCAD estimator with divergence number of predictors.  

Theorem 1. (Consistency). Assuming that ( )ii xy , , ni ,,1= are i.i.d. and the conditions 
given in Assumption1-5 are satisfied, then there exists a penalized LAD-SCAD estimator  

( ).ˆ:ˆ
0 npp nnn Ο=− βββ

Theorem 2. (Oracle property). Assume that ( )( ) ( )nnnnn pprEnpk 1ˆ,033 οθ =→ , and the 
assumptions 1-5 are satisfied, then the penalized LAD-SCAD estimator ( )TT

n
T
nn 21

ˆ,ˆˆ βββ =  
satisfies the following:

i. (Sparsity) 0ˆ
2 =nβ  with ( ) 10ˆPr 2 →=nβ as ∞→n .

ii. (Asymptotic normality)

( )
( )

( ) ( )( ) ( )( )( )2

1

21
11,101

21
11,

21 025.0,000
02
1ˆ −

=

− ∑ →>−<Σ
−

=−Σ fNweIeI
nf

n
n

i

D

iiin
T

nn
T αββα ,

Here α is a random 1×nk vector with ,1=α  and the notation 
D
→ means the convergence 

in distribution. The proofs of the foregoing theorems follow from the adaptation of the 
proofs in Wang et al. (2015). 

Wrapping Sure Independent Screening for Ultrahigh Dimensional Data

In the preceding section, we discussed the desirable properties of the penalized LAD-
SCAD estimator when the number of predictors is less than the number observations. In the 
present section, we will give special attention on the ultrahigh dimensional scenario which 
is npn >> . Fan and Lv (2008) noted that the traditional penalized selection procedure like 
Lasso or SCAD or Dantzing selector tended to misbehave when the number of the predictor 
variables np was too large compare to the number of observations. This had motivated 
Fan et al. (2009) and Wang et al. (2015) to combine the penalized and the SIS procedures 
to have a two steps procedure called penalized sure screening for high dimensional linear 
regression models. In the first step, SIS is implemented to reduce the dimension from the 
ultrahigh to below sample size and then used a suitable penalized estimator to accomplish 
the final variable selection and parameters estimation concurrently. The SIS is computed 
according to the Pearson correlation between the dependent variable and the predictors. 
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Li et al. (2012) noted that Pearson correlation was affected by outliers and or heavy tailed 
errors. This led to the procedure of LAD-SCAD given in Wang et al. (2015) where it 
employed rank correlation screening method based on rank correlation, denoted as RCS+ 
LAD-SCAD.  The appealing features of the combined procedure includes: (i) It is easy 
to apply because the computational burden for huge or large scale problems can easily be 
handled by any well-known correlation algorithm for example Pearson correlation and 
(ii) it enjoys the oracle properties (Fan & Li, 2001). Despite these striking properties, the 
existing combined procedure that is RCS+LAD-SCAD still have two shortfalls: (i) it uses 
rank based correlation which may or may not be preferable in a given application as they 
measure monotonicity instead of the linear relationship in addition to being too sensitive to 
multiple outliers (Croux & Dehhon, 2010; Raymaekers & Rousseeuw, 2019) (ii) the RCS 
combined with LAD-SCAD estimator, does not take into account the effect of outlier in 
the computation of the sequence of regularization parameters which is considered as the 
key determinant factor in selecting predictable and interpretable model (Zhang et al., 2010; 
Shevlykov & Simironov, 2011). Recently, Raymaekers and Rousseeuw (2019) had shown 
that the rank correlation based on Kendall was liable in the presence of contamination and or 
heavy tailed errors. Comparisons between the robust and the non-robust correlation methods 
can be found in Shevlykov and Simironov (2011). The latter works motivate us to improvise 
the RCS+LAD-SCAD by employing the wrapped correlation algorithm to achieve robust 
sure independent screening and compute the set of the regularization parameters for model 
selection for onward model selection and prediction. We call this method WCS+LAD-
SCAD estimator. Following Fan and Lv (2008), let }0:1{* ≠≤= jpS β be the true model 
parameter values with non-sparsity size ns << . Under the assumption of sparsity, the 
other sp − variables can also be associated with the response variable by linkage to the 
predictor variables that are enclosed in the model. Let ),,( 1 pwww = be a 1×np  vector 
computed based on the component wise regression that is Equation 6. 

           (6)

For any given )1,0(∈γ , the component wise magnitude of the vector w  is sorted in 
decreasing order and a submodel can be defined as:

|:|1{ jwpjS ≤≤=γ is among the first ][ nγ  largest of all}, where ][ nγ represents the 
integer part of nγ . This is the commonly used procedure to reduce the full model from 
high down to a submodel γS with a size nndn <= ][γ . In similar style, Wang et al. (2015), 
replaced Equation 6 with Kendall correlation learning algorithm while maintaining the same 
selection criteria to better estimates since the latter is proved to be non-robust estimator. 
The Kendall correlation values can be obtained using the Equation 7:

∑ −<<
−

= ,
4
1)()(

)1(
1

iiijijk yyIxxI
nn

w npj ,1=     (7)

yXw T=
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Using the same approach as in Fan and Lv (1996) and Wang et al. (2015), but with 
fast and more robust correlation estimator built upon the wrapped correlation algorithm of 
Raymaekers and Rousseeuw (2019), we will replace the correlation formula in Equation 6 
and 7 with the wrapped correlation algorithm introduced by Raymaekers and Rousseeuw 
(2019) while maintaining the selection procedure in Fan and Lv (1996) and Wang et al. 
(2015). The wrapping correlation procedure can be defined as follows: let the correlation 
values of the wrapped variables be defined by the entries as Equation 8. 

)
ˆ

ˆ
,

ˆ
ˆ

(),( , 








 −









 −
== ∗∗

y

yji

xj

xjij
cbj

yx
coryXcorw

σ
µ

σ
µ

ψ     (8)

where ∗X and ∗y are the transformed variables, xjµ̂ and yµ̂ are the estimates of location 
computed based on the one step M estimator of location with the wrapping function cb,ψ , 
with 5.1=b and 4=c , xjσ̂ and yσ̂ are computed using the MAD estimator (Raymaekers 
& Rousseeuw, 2019). We will present the broader steps involved for the implementation 
of the proposed WCS+LAD-LASSO in the next section.  

Computational Procedures 

The LAD-SCAD estimator can be computed easily by augmenting a dataset and using any 
suitable existing software; for example, Matlab or Phyton or R for quantile regression. 
Define an augmented dataset ( ){ },,1,,,1,~,~

nii pnnniXy +++=   where nXXnyy iiii == ~,~  for 
ni ,,1=  and ( ) injii epXy

n

~~,0~ 0βλ′== for npnni ++= ,,1 and ie~  is a 1×np dimensional 
vector with thi term component equal to 1 such that Equation 4 can be expressed as 
Equation 9.

( ) ∑∑∑
+

===

−=′+−
nn

n

pn

i
n

T
ii

p

j
njnj

n

i
n

T
ii XypnXy

11

0

1

~~ ββββ λ        (9)

Equation 9 is equivalent to the traditional LAD objective function for the dataset ( )ii Xy ~,~

for npnnni ++= ,,1,,,2,1  . In this paper, an R software package quantreg is used for 
solving Equation 9. Furthermore, in the robust Lasso type regression, the selection of 
appropriate regularization parameter controls the complexity and improves the prediction 
accuracy of the selected model (Wang & Zhu, 2011; Friedman et al., 2010; Gao & Huang, 
2010).  Although there are several methods for selecting the best regularization parameter 
in the literature, the issue of robustness and computational efficiency desire special attention 
as well. Friedman et al. (2010) suggested a coordinate descent algorithm for computing 
the regularization parameters which is adapted in Wang et al. (2015). The computation 
of the sequence of K values of λ is a function of minλ and maxλ where ,maxmin λλ =∈  

001.0,,maxmax ∈== nyX iλ and 100=K  (Friedman et al., 2010). Following this concept, 
we replace yX i , with the wrapped correlation to robustly estimate the maximal correlation 
between the columns of X matrix and the vector y based on the idea of the product moment 
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transformation of the dataset as backed in Raymaekers and Rousseeuw (2019). Our reason 
for this is to reduce the effect of outliers before applying the selection criteria for onward 
model selection. This is followed by selecting a suitable model selection criterion such as 
the type considered in Wang et al. (2007) and Chang et al. (2018). In this paper, we consider 
the BIC type criteria used in Gao and Huang (2010) as cited in Wang et al. (2015). This 
is defined by Equation 10: 

( ) ,logˆ1log
1 n

ndXy
n

BIC
n

i
n

T
ii λβ +








−= ∑

=

      (10)

where λd is the number of significant regression coefficients. The computation procedure 
for the proposed WCS+LAD-SCAD estimator can be summarized as follows:
Step 1. For a given dataset ( )yX ,  where pnX ×ℜ∈ is the design matrix and ny ℜ∈ is 
the response variable and +Ζ∈nd

1. Compute the robust initial scale xjσ̂ for p,,2,1  based on the median absolute 
deviation (MAD) for the matrix pnX ×ℜ∈ and yσ̂  for the vector of response

pn
iy ×ℜ∈ . 

2. Compute a one-step M location estimator xjµ̂ for the matrix pnX ×ℜ∈ and yµ̂ for 
the vector of response pn

iy ×ℜ∈ with wrapping function cb,ψ  where 4,5.1 == cb
3. Let the variables *X and *y  denote the transformed of the original variables X 

and y , then we can compute jw  for pj ,1= based on Equation 8 and select 
the subset of predictor variables ndn <  such that jw is among the first largest 
ones. Then apply the LAD-SCAD penalized estimator to Equation 1 by employing 
the following steps. 

Step 2. Compute the sequence of regularization parameterλ  defined on the interval
[ ]minmax ,λλ , where )(),(maxmax ygXg yX=λ  and maxmin λλ =∈ with 001.0∈=   

Step 3. Compute the initial estimates β̂  by minimizing the unpenalized lad objective 
function ∑

=

−
n

i
xy

1
β . Using the initial estimates in step 3 and the set of regularization 

parameter λ  in step2, compute the SCAD penalty function as in Equation 5. 

Step 4. Form the augmented dataset ( )yX ~,~ for ,,1,,,2,1 pnnni ++=   where
( ) ( )n

X
n
y iiXy ,~,~ = , ni ,,1=  and ( )( )inj epXy ~,0)~,~( 0βλ′= for ,,1,,,2,1 pnnni ++=   

and ie~  is a vector of p  by 1 with all the thi  component equal to 1. 

Step 5. Use any of the LAD regression procedure, for example quantreg package 
in R to compute the lad regression estimators for the augmented dataset ( )yX ~,~

 for 
,,1,,,2,1 pnnni ++= 

Step 6. Select the best model by computing the formula in Equation 9 for each value of λ. 
The model that corresponds to the minimum value of λ  is considered as the best. 
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Numerical Evaluation 

To assess the performance of the proposed WCS+LAD-SCAD estimator as explained in 
the proceeding sections, we carried a simulation study and analysis three real datasets 
namely NIR, octane and cookie dataset.  

Simulation Study

A simulation study is carried out to compare the variable selection properties and prediction 
accuracy of the proposed method and the existing RCS+LAD-SCAD estimator with 
divergent number of predictors. As per Wang et al. (2015) the following three cases are 
considered: 

Case 1: ,i
T
i eXy += β with ( ) niNei ,,1,1,0~ =

Case 2: ,i
T
i eXy += β with ( ) nitei ,,1,3~ =

Case 3: ,i
T
i eXy += β  with ( ) ( ) niCauchyNei ,,1,31.01,09.0~ =+

Here, for each case, we set the vector of coefficients β such that 2,5.1,3 521 === βββ  
and 0=jβ  for { }5,2,1∉j . The vector of predictors T

ipi xxX ),,( 1 =  are generated 
from the multivariate normal distribution with mean 0 and covariance matrix ijσ=Σ
with ji

ij
−= 5.0σ . The number of predictors np and the number of sample size n are set 

to ( )1000,500=np and ( )200,100=n  which are repeated 200 times in each case. We used 
the same seed number, 1234 throughout this paper both in the simulation and real date 
examples. The threshold )log(4 nndn = is used with wrapped correlation screening WCS 
method to reduce the dimension from np  to nd . Table 1 to 3 exhibit the results based on the 
average number of zero coefficients correctly estimated as zero (NC), the average number 
of non-zero coefficients incorrectly estimated to zero (NIC). Following Aslan (2012) and 
Wang et al. (2015), the average median estimation error (MEE) defined as ββ −ˆ

 
is also 

used as performance measures of the various estimators. The values in parenthesis are for 

200=n and 1000=np  

Table 1
Results for normal distributed errors with 100=n , 500=p ; 200=n  , 1000=p  in parenthesis

Method NC NIC MEE %Efficiency
RCS+LAD-Lasso 495.050(995.435) 0.000(0.000) 0.585(0.467) 37.43(31.69)
RSC+LAD-SCAD 496.570(996.975) 0.003(0.000) 0.281(0.160) 77.94(92.50)
WSC+LAD-Lasso 495.275(995.510) 0.000(0.000) 0.553 (0.398) 39.60(37.19)
WSC+LAD-SCAD 496.615(996.980) 0.000(0.000) 0.261(0.150) 83.91(98.66)
Oracle 497.000(997.000) 0.000(0.000) 0.219(0.148) 100(100)
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Table 2

Results for 3t distributed errors with 100=n , 500=p ; 200=n , 1000=p  in parenthesis

Method NC NIC MEE %Efficiency
RCS+LAD-Lasso 495.175(995.985) 0.000(0.000) 0.720(0.580) 31.81(31.55)
RSC+LAD-SCAD 495.775(996.815) 0.004(0.000) 0.520(0.214) 44.04(85.51)
WSC+LAD-Lasso 495.525(996.705) 0.000(0.000) 0.654(0.465) 35.02(39.35)
WSC+LAD-
SCAD

496.061(997.000) 0.003(0.000) 0.482(0.183) 47.51(100.00)

Oracle 497.000(997.000) 0.000(0.000) 0.229(0.183) 100(100)

Table 3
Results for normal errors with 10% contaminated observations, 100=n , 500=p ; 200=n , 1000=p                           
in parenthesis

Method NC NIC MEE %Efficiency
RCS+LAD-Lasso 495.110(996.175) 0.006(0.001) 0.623(0.521) 36.44(29.37)
RSC+LAD-SCAD 496.310(996.970) 0.051(0.002) 0.381(0.163) 59.58(93.87)
WSC+LAD-Lasso 495.465(995.895) 0.005(0.000) 0.597(0.424) 38.02(36.08)
WSC+LAD-SCAD 496.430(997.000) 0.030(0.000) 0.360(0.156) 63.06(98.08)
Oracle 497.000(997.00) 0.000(0.000) 0.227(0.153) 100(100)

It can be observed From Table 1 to 3 that the RCS+LAD-Lasso and WSC+LAD-
Lasso provide the worst results in terms of having NC and MEE values far away from the 
oracle values. Although their results are close, the values of MEE for WSC+LAD-Lasso 
are consistently smaller than those of the RCS+LAD-Lasso which indicate that WSC 
screening algorithm tends to increase the estimation accuracy.  On the other hand, the values 
of the NC, NIC and MEE of WCS+LAD-SCAD estimator tend to be closer to the Oracle 
estimator. Nevertheless, the WSC+LAD-SCAD estimator provides NC, NIC and MEE 
values which are in best agreement with the oracle values especially when the 200=n
and 1000=p . The performance of RSC-LAD-SCAD is quite good both in terms of NC 
and MEE values; however, its accomplishment cannot outperform the WSC+LAD-SCAD. 
The performances of WSC-LAD-SCAD compared to other estimators is further assesed 
based on efficiency criterion (Dhhan et al., 2017) defined as follows:

Efficiency = (MEE of the (oracle estimator)/MEE of the (oracle competitors)) x 100%.
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It can be clearly seen from Table 1 to 3 that our proposed WSC-LAD-SCAD has 
the highest value of efficiency, followed by RSC+LAD-SCAD, WSC+LAD-Lasso and 
RCS+LAD-Lasso. The results seem to be consistent for each sample )200,100(=n , and the 
number of predictors, )1000,500(=np , respectively.  Hence, the WSC+LAD-SCAD may 
give a better alternative estimator for handling ultrahigh dimensional data in the presence 
of outliers.  Furthermore, the results incline to suggest that by using the WSC screening 
algorithm, the efficiency of the LAD-SCAD estimator can substantially be improved.

Real Life Application

In this section, several real-life examples are presented to show the applicability and merit 
of our proposed method.  These datasets include near infrared spectroscopy (NIR), cookies, 
and octane. The dataset can be obtained from the chemometrics, ppls, and rrcov packages 
in R, which have been formerly analysed in Brown et al. (2001), Liebmann et al. (2009), 
and Hubert et al. (2005), respectively.  The octane data set consists of 39 samples and 226 
predictors. After some preliminary investigation of the response observations based on 
Hubert and Van der Veeken (2008) as used in https://github.com/marcellodo/univOutl, we 
detected observation 25, 26, 36-39 as outliers. This procedure was repeated on the responses 
of the cookies and NIR data set, but all detected zero outlying points. The dimension for NIR 
data is 166 by 235 and 72 by 700 for the cookies data which represent number of sample 
and predictors, respectively. Motivated by the skewness property of the octane data plus our 
motive to assess the vigour of the proposed procedure, we contaminated the responses of 
NIR and cookies data by multiplying 0.05 percent of randomly selected observation by 100 
after splitting the data into training and test set (the percentage are given in parenthesis) as 
given in Table 4. Applying the computational procedure described in the previous sections 
produced the results as shown in Table 4 for test data set, where the second column before 
the last column, represents the number of variables selected (NVS), the column before 
the last represents the average median absolute error, and the last represents the average 
robust R2 statistics over 100 repeated simulations, as used in (Liu et al, 2016).  Here, we 
employed the robust R2 which is adapted from Wang et al. (2007) as defined Equation 11: 

( )
( )

2
2 ˆ

1 






 −
−=

i

ii

ymad
yymed

R                                                                       [11]

Generally speaking, the range of 2R value start from 0 to 1 for a reasonable fit, R2=1 
signifies perfect fit and 02 <R corresponds to bad model fit. From Table 4, it is interesting 
to observe that the proposed technique outperformed its competitors on all the data set, 
and is considered as our method to select a reasonable number of variables with minimum 
median absolute error (MAE) and better 2R statistics. The threshold value of d=n/log (n) 
is used in all the data sets. A boxplot of the median absolute error and 2R statistics for the 
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original data (raw values) as shown in Figure 1 to 2 explicitly demonstrate the effectiveness 
of our method against its competitors.  

Table 4
Real data application  

No. Dataset Method #train
 (%)

#test   
(%)

NVS MAE 2R

1 NIR
(166×235)

RCS+LAD-Lasso 120(72) 46(28) 1 0.659 -0.8597

RSC+LAD-SCAD 3 0.253 0.2222
WSC+LAD-Lasso 1 0.368 -0.1848
WSC+LAD-SCAD 8 0.212 0.3472

2 Octane
(39×226)

RCS+LAD-Lasso 25(64) 14(36) 3 0.008 0.9994

RSC+LAD-SCAD 4 0.007 0.9999
WSC+LAD-Lasso 6 0.005 0.9995
WSC+LAD-SCAD 6 0.004 1.0000

3 Cookie
(72×700)

RCS+LAD-Lasso 40(56) 32(44) 1 0.433 0.7589

RSC+LAD-SCAD 8 0.237 0.9281
WSC+LAD-Lasso 1 0.432 0.7559
WSC+LAD-SCAD 10 0.143 0.9697

Figure 1. Boxplot of the median absolute error for the octane, NIR and cookies data set with RCS+LAD-
Lasso=1, RCS+LAD-SCAD=2, WCS+LAD-Lasso =3 and WCS+LAD-SCAD =4 respectively.  
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Figure 2. Boxplot of the 2R  statistics for the octane, NIR and cookies data set with RCS+LAD-Lasso=1, 
RCS+LAD-SCAD=2, WCS+LAD-Lasso =3 and WCS+LAD-SCAD =4, respectively. 

CONCLUSION 

Inspired by the robust rank correlation sure screening-based LAD-SCAD, we proposed a 
wrapped based sure screening LAD-SCAD to achieve better robust estimates. The main 
advantage of our method is that it deals with outliers in both the pre-screening and post-
screening step by using the robust wrapped transformation in the computation of best 
regularization parameter.  The proposed procedure shows more success as it appears to be 
more robust and efficient than the existing RCS+LAD-SCAD method for solving linear 
regression in the presence of outlying observations. Therefore, the proposed procedure 
can be used by practitioners for parameter estimations and variable selection when the 
response observation contains some outliers. Future work will consider the impact of both 
vertical and horizontal outliers.  
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